Gesundheitsförderung und Prävention durch Bewegung

Andreas M. Nieß^{1, 2}

¹ Innere Medizin V, Abteilung Sportmedizin, Universitätsklinikum Tübingen

² Interfakultäres Forschungsinstitut für Sport und körperliche Aktivität, Universität Tübingen

04.05.20

© UNIVERSITÄTSKLINIKUM TÜBINGEN.

Evidenz

Epidemiologische Studien

Mechanismen körperlicher Aktivität

Individuelle Dosis-Wirkungsbeziehung

Körperliche Aktivität und Krankheitsrisiko – Die historische Entwicklung

A DRIVERS (MACTIVE) CONDUCTORS(Active) TELEPHONISTS (WACT/VE) DOSTMEN (ACTIVE) INCIDENCE INCIDENCE TOTAL AS ANGINA AS CORONARY INCIDENCE PECTORIS HEART DISEASE 1949-50 1949-50 DYING IN 3 MOS. Fig. 2 .--- First clinical episodes of coronary heart-disease in 1989-62: A. drivers and male conductors, aged 35-64, of Central London Buns: B, G.P.O. male telephonists and postmen, aged 35-59.

Inzidenz der KHK

Morris et al. (1953) Lancet 265: 1111-20

Gemindertes Sterberisiko

SPIEGEL ONLINE

15 Minuten Bewegung am Tag verlängern Leben um drei Jahre 22.11.2011

Jogger im Londoner Hyde Park: Tod hinausgezögert

Schon eine Viertelstunde körperliche Aktivität pro Tag senkt das Risiko, vorzeitig zu sterben um 14 Prozent - im Durchschnitt leben Menschen dadurch drei Jahre länger. Das zeigen medizinische Daten von 400.000 Taiwanern.

Wen et al. Lancet (2011) 378: 1244-1253

Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study

Chi Pang Wen*, Jackson Pui Man Wai*, Min Kuang Tsai, Yi Chen Yang, Ting Yuan David Cheng, Meng-Chih Lee, Hui Ting Chan, Chwen Keng Tsao, Shan Pou Tsai, Xifeng Wu

Lancet (2011) 378: 1244-1253

N = 416.175 Personen 199.265 Männer, 216.910 Frauen

Gruppen körperliche	er Aktvität (MET-Std. / Woche):
inaktiv:	< 3.75
gering:	3.75 – 7.49
mittlere:	7.49 – 16.49 (z.b. 2.5 Std. Walking)
hohe:	16.49-25.49
Sehr hohe:	> 25.49 (e.g. >3.5 hrs. Jogging)

Epidemiologische Evidenz - Subgruppenanalyse

Wen et al. (2011) Lancet 378: 1244-1253

Epidemiologische Evidenz - Gesamtaktivität

Kyu et al. (2016) BMC 354: j3857

MET (minutes/week 000s)

- Koronare Herzerkrankung -

Dose Response Between Physical Activity and Risk of Coronary Heart Disease

A Meta-Analysis

Jacob Sattelmair, MSc, ScD; Jeremy Pertman, MS; Eric L. Ding, ScD; Harold W. Kohl III, PhD; William Haskell, PhD; I-Min Lee, MBBS, ScD

Circulation (2011) 124: 789-795

Table.Pooled Relative Risks of Coronary Heart Disease ComparingHighest and Lowest Physical Activity Categories

ype of Activity	Sex	Studies	Relative Risk (95% Cl)	l ² , %	Studies, n*
.TPA	Combined	All studies	0.74 (0.69-0.78)	28.3	26
		Quant	0.71 (0.63–0.80)	39.8	9
	Men	All studies	0.78 (0.73–0.82)	0	15
		Quant	0.79 (0.72–0.86)	0	5
	Women	All studies	0.67 (0.61–0.74)	12.5	11
		Quant	0.64 (0.52–0.79)	40.6	5
Total PA	Combined	All studies	0.74 (0.62–0.90)	0	3
	Men	All studies	0.79 (0.59–1.07)	18.9	2
	Women	All studies	0.66 (0.44–0.99)	0	2

Epidemiologische Evidenz - Typ 2 – Diabetes -

Risikoreduktion pro 10 MET-Stunden pro Woche

Physical activity and incident type 2 diabetes mellitus: a systematic review and dose–response meta-analysis of prospective cohort studies

Andrea D. Smith^{1,2} · Alessio Crippa³ · James Woodcock⁴ · Søren Brage⁵

Diabetologia (2016) 59: 2527-2545

Authors (date) [ref.] ES (95% CI)	
LTPA Helmrich et al (1991) [14] Lynch et al (1996) [13] Haapanen et al (1) (1997) [36] Haapanen et al (1) (1997) [36] Haapanen et al (1) (1997) [36] James et al (1998) [63] Folsom et al (2000) [62] Okada et al (2000) [66] Hu et al (2000) [66] Hu et al (2004) [70] Weinstein et al (2005) [37] Weinstein et al (2005) [37] Weisinger et al (1) (2005) [37] Weisinger et al (1) (2005) [37] Willegas et al (2006) [47] Carlsson et al (2009) [68] Fretts et al (2009) [68] Chien et al (2009) [64] Chien et al (2009) [66] Chien et al (2009) [64] Craftscon et al (2009) [66] Chien et al (2012) [67] Crontved et al (11) (2012) [38] Crontved et al (11) (2014) [35] Crontved et al (11) (2014) [35] Cro	
Total PA Burchfiel et al (1995) [58] Nakanishi et al (2004) [57] Ekelund et al (1) (2012) [39] Ekelund et al (1) (2012) [39] Ekelund et al (11) (2012) [39] Subtotal (1 ² =85.6%, p<0.001)	
.2 .4 1 2 4	3

Dosis an körperlicher Aktivität	Risikoreduktion
Pro 10 MET-Stunden/Woche	13% (95% Cl 11 – 16%)
150 min moderat 11.25 MET-Stunden/Woche	26% (95% Cl 20 – 31%)
300 min moderat	36% (95% CI 27 – 46%)
60 MFT-Stunden/Woche	53%

- Neoplastische Erkrankungen -

n = 1.44 Mio. Teilnehmer

In 13 von 26 Tumorentitäten geringeres Risiko unter körperlicher Aktivität

Bei 7 Tumorentitäten Risikoreduktion > 20%

Cancer	# of Studies	Cases		HR (95% CI)	P	P _{heterogeneity} ‡
Esophageal adenocarcino	ma 5	899 —		0.58 (0.37-0.89)	0.01	0.01
Gallbladder	6	382		0.72 (0.51-1.01)	0.06	0.29
Liver	10	1,384	e	0.73 (0.55-0.98)	0.04	0.02
Lung	12	19,133	-	0.74 (0.71-0.77)	< 0.001	0.47
Kidney	11	4,548		0.77 (0.70-0.85)	< 0.001	0.40
Small intestine	7	503		0.78 (0.60-1.00)	0.05	0.85
Gastric cardia	6	790	_	0.78 (0.64-0.95)	0.02	0.99
Endometrial	9	5,346	——	0.79 (0.68-0.92)	0.003	<0.01
Esophageal squamous	6	442		0.80 (0.61-1.06)	0.12	0.78
Myeloid leukemia	10	1,692	——	0.80 (0.70-0.92)	0.002	0.78
Myeloma	9	2,161	—•	0.83 (0.72-0.95)	800.0	0.36
Colon	12	14,160	-8-	0.84 (0.77-0.91)	<0.001	0.01
Head and neck	11	3,985		0.85 (0.78-0.93)	<0.001	0.45
Rectum	12	5,531		0.87 (0.80-0.95)	0.001	0.38
Bladder	12	9,073	-	0.87 (0.82-0.92)	< 0.001	0.84
Breast	10	35,178		0.90 (0.87-0.93)	< 0.001	0.30
Non-Hodgkin lymphoma	11	6,953		0.91 (0.83-1.00)	0.05	0.18
Thyroid	11	1,829		0.92 (0.81-1.06)	0.26	0.48
Gastric non-cardia	7	1,428		0.93 (0.73-1.19)	0.56	0.09
Soft tissue	10	851		0.94 (0.67-1.31)	0.70	0.03
Pancreas	10	4,186		0.95 (0.83-1.08)	0.40	0.14
Lymphocytic leukemia	10	2,160		0.98 (0.87-1.11)	0.73	0.99
Ovary	9	2,880	-+	1.01 (0.91-1.13)	0.81	0.98
Brain	10	2,110	-	1.06 (0.93-1.20)	0.41	0.43
Prostate	7	46,890		1.05 (1.03-1.08)	<0.001	0.90
Malignant melanoma	12	12,438		1.27 (1.16-1.40)	<0.001	0.02
		0.3	06 1 1	5		
		0.0	0.0			

Hazard Ratio (90th vs 10th percentile of physical activity)

- Sitzen und Sterblichkeitsrisiko -

А for the Lancet Physical Activity Series 2 Executive Committe* and the Lancet Sedentary Behaviour Working Group* 2.0 1.7-Hazard ratio (95% CI) 1.4-MALIN XA. 225 CARP. 1.2 -GERMANWIN Watern der Coole rots Depression 1.1 BILLIONENSPIE Verapoken die Euro-Re 1.0 0.9 0.8 LANDAY LEG NIDAY NIDAY NIDAY 4 hiday LA hiday Ahlday hiday hiday hiday A hilder hider hider 26 hlbay hlbay hlbay ten Sitzen erhöht das Risiko für schwere Krankheite STERN Nr. 16 20-04-2015 >35.5 MET-h/week 30 MET-h/week 16 MET-h/week <2.5 MET-h/week Quartiles of physical activity

Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women

Ulf Ekelund, Jostein Steene-Johannessen, Wendy J Brown, Morten Wang Fagerland, Neville Owen, Kenneth E Powell, Adrian Bauman, I-Min Lee,

Lancet (2016) 388: 1302-1310

- Inaktivität und Seelische Gesundheit

Depressive symptoms and objectively measured physical activity and sedentary behaviour throughout adolescence: a prospective cohort study

Aaron Kandola, Gemma Lewis, David PJ Osborn, Brendon Stubbs, Joseph F Hayes

Lancet Psychiatry (2020) 7: 262-271

	Unadjusted model		Fully adjusted model*		
	IRR (95% CI)	p value	IRR (95% CI)	p value	
Exposure at 12 years (n=2486)					
Count per minute (per 100)	0.910 (0.882-0.939)	<0.0001	0.941 (0.910-0.972)	<0.0001	
Sedentary behaviour (per 60 min)	1.108 (1.054-1.165)	<0.0001	1.111 (1.051–1.176)	<0.0001	
Light activity (per 60 min)	0.883 (0.834-0.933)	<0.0001	0.904 (0.850-0.961)	0.0012	
Moderate-to-vigorous activity (per 15 mins)	0.848 (0.863-0.965)	<0.0001	0.910 (0.857-0.966)	0.0018	
Exposure at 14 years (n=1938)					
Count per minute (per 100)	0.933 (0.902-0.965)	<0.0001	0·965 (0·932-0·999)	0.0443	
Sedentary behaviour (per 60 min)	1.114 (1.057–1.175)	<0.0001	1.080 (1.012-1.152)	0.0200	
Light activity (per 60 min)	0.908 (0.851-0.970)	0.0044	0.922 (0.857-0.992)	0.0299	
Moderate-to-vigorous activity (per 15 mins)	0.913 (0.863-0.965)	0.0409	0.960 (0.905–1.018)	0.1691	
Exposure at 16 years (n=1220)					
Count per minute (per 100)	0.939 (0.896-0.983)	0.0072	0.984 (0.937-1.033)	0.5092	
Sedentary behaviour (per 60 min)	1.101 (1.026-1.180)	0.0068	1.107 (1.015-1.208)	0.0210	
Light activity (per 60 min)	0.882 (0.810-0.961)	0.0040	0.889 (0.809-0.974)	0.0133	
Moderate-to-vigorous activity (per 15 mins)	0.938 (0.883-0.997)	0.0413	1.001 (0.936–1.071)	0.9662	

Depression at 18 years of age was assessed with the Clinical Interview Schedule-Revised. IRR=incidence rate ratio. *Adjusted for sex, maternal social class, parental psychiatric history, parental education, ethnicity, baseline depression, and total accelerometer wear time at each timepoint.

Table 3: Longitudinal associations between depression scores at 18 years and different levels of physical activity and sedentary behaviour at 12 years, 14 years, and 16 years of age

"Polypill" Körperliche Aktivität

http://www.healthexpress.eu/de

Wirkmechanismen körperlicher Aktivität

- Insulinresistenz -

Glucose Transporter Number, Function, and Subcellular Distribution in Rat Skeletal Muscle After Exercise Training

LAURIE J. GOODYEAR, MICHAEL F. HIRSHMAN, PATRICIA M. VALYOU, AND EDWARD S. HORTON

Diabetes (1992) 41: 1091-1099

Wirkmechanismen körperlicher Aktivität - Kardiovaskuläre Erkrankungen –

Schuler et al. (2018) Eur Heart J 34: 1790–1799

TGF-B

Wirkmechanismen körperlicher Aktivität - Krebserkrankungen -

Cell Metabolism

Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution

Graphical Abstract

Authors

Line Pedersen, Manja Idorn, Gitte H. Olofsson, ..., Bente K. Pedersen, Per thor Straten, Pernille Hojman

Correspondence

phojman@inflammation-metabolism.dk

(2016) 23, 554–562

In Brief

The beneficial effects of exercise are countless. Pedersen et al. now link exercise, cancer, and immunity and reveal that exercise decreases tumor incidence and growth by over 60% across several mouse tumor models through a direct regulation of NK cell mobilization and trafficking in an epinephrine- and IL-6-dependent manner.

Wirksamkeit körperlicher Aktivität

- Qualitative Aspekte

Kraft vs. Ausdauertraining

Nieß & Thiel (2017) Diabetologie 12: 112-126

Adapted from Pollok et al., 2001; Mandic et al., 2012 Fagard et al. 2006

Variable	Aerobes Ausdauertraining	Kraft- training	
Maximale Sauerstoffaufnahme	† †	↔/↑	
Leistung an der individuellen anaeroben (Laktat-)Schwelle	↑ ↑ ↑	↔/↑	
Körperfettanteil (%)	11	Ļ	
Fettfreie Körpermasse	↔/↑	î î	
Muskelkraft	↔/↑	111	
Ektope Fettspeicher (Leber, viszeral)	111	↔/↓	
Insulinsensitivität	11	† †	
HDL-Cholesterin	t	↔/ ↑	
LDL-Cholesterin	↔/↓	↔/↓	
Ruheumsatz	t	Ť	
Herz-Kreislauf-System:			
 Ruheherzfrequenz 	↓↓	↔/↓	
 Schlagvolumen 	11	↔	
 Ruheblutdruck (systolisch) 	Ļ	Ļ	
 Ruheblutdruck (diastolisch) 	Ţ	Ļ	

Wirksamkeit körperlicher

Cardio-metabolic risk factors adaptations in HIIE and MICT: A meta-analysis

Aktivität - Qualitative Aspekte

Metabolic Adaptations to Short-term High-Intensity Interval Training: A Little Pain for a Lot of Gain?

Martin J. Gibala,¹ and Sean L. McGee²

¹Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and ²Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia

Meta-Analysis	Number of Studies	Favours MICT	Favours HIIE	d	95% CI	p-value	Effect Size	Egger p-value
VO_{2max} Heterogeneity: I ² = 77%, τ^2 = 0.5788, p < 0.01	46		+	0.73	[0.47; 0.98]	<0.001	medium	> 0.05
Flow-mediated Dilation Heterogeneity: $l^2 = 95\%$, $\tau^2 = 2.8667$, p < 0.01	8			1.72	[0.48; 2.96]	0.006	large	> 0.05
BMI Heterogeneity: $I^2 = 85\%$, $\tau^2 = 0.9450$, p < 0.01	28	-	-	0.01	[-0.39; 0.40]	0.974	trivial	< 0.001
Body Mass Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p = 1.00	41			-0.10	[-0.22; 0.02]	0.111	trivial	< 0.001
Body Fat Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p = 0.75	28		त्म्ब सन्द	0.13	[-0.02; 0.29]	0.096	trivial	> 0.05
Systolic Blood Pressure Heterogeneity: $I^2 = 90\%$, $\tau^2 = 1.3828$, p < 0.01	23		-	-0.19	[-0.70; 0.32]	0.475	trivial	< 0.05
Diastolic Blood Pressure Heterogeneity: $I^2 = 94\%$, $\tau^2 = 2.6750$, p < 0.01	23		-	0.02	[-0.67; 0.71]	0.954	trivial	> 0.05
HDL Heterogeneity: $I^2 = 97\%$, $\tau^2 = 8.2475$, p < 0.01	26			-1.75	[-2.94; -0.56]	0.004	large	> 0.05
LDL Heterogeneity: $i^2 = 97\%$, $\tau^2 = 7.7425$, p < 0.01	21	_	-	0.52	[-0.71; 1 .76]	0.407	medium	> 0.05
Triglycerides Heterogeneity: $I^2 = 94\%$, $\tau^2 = 3.4677$, p < 0.01	25		<u> </u>	0.06	[-0.73; 0.84]	0.888	trivial	> 0.05
Total Cholesterol Heterogeneity: $I^2 = 94\%$, $\tau^2 = 3.5453$, p < 0.01	24			0.80	[0.00; 1.60]	0.049	large	< 0.01
C-reactive Protein Heterogeneity: Ι* = 92%, τ* = 2.1578, p < 0.01	6			-1.80	[-3.05; -0.55]	0.005	large	> 0.05
Fasting Insulin Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p = 0.56	18			0.10	[-0.09; 0.29]	0.317	trivial	> 0.05
Fasting Glucose Heterogeneity: $I^2 = 95\%$, $\tau^2 = 3.5120$, p < 0.01	25	-	*	0.54	[-0.24; 1.33]	0.176	medium	> 0.05
$\label{eq:holest} \begin{array}{l} \textbf{Hb}_{\textbf{A1c}} \\ \text{Heterogeneity: I}^2 = 76\%, \ \tau^2 = 0.5981, \ p < 0.01 \end{array}$	9			-0.88	[- 1 .46; -0.29]	0.003	large	> 0.05
$\label{eq:homoson} \begin{array}{l} \textbf{HOMA-IR} \\ \text{Heterogeneity: } \mathbf{I}^2 = 94\%, \ \tau^2 = 4.2601, \ p < 0.01 \end{array}$	16	_ 		-1.09	[-2.14; -0.03]	0.043	large	< 0.01
		-3 -2 -1	0 1 2 3					

Mattioni et al. (under review)

Cohen's d Effect Sizes

Individuelle Trainierbarkeit

Maximale Sauerstoffaufnahme

Bouchard & Rankinen (2001) Med Sci Sports Exerc 33: S446

Bouchard et al. (2012) PLoS ONE 7: e37887

Individuelle Trainierbarkeit

50

OPEN a ACCESS Freely available online

Adverse Metabolic Response to Regular Exercise: Is It a **Rare or Common Occurrence?**

Claude Bouchard¹*, Steven N. Blair², Timothy S. Church³, Conrad P. Earnest³, James M. Hagberg⁴, Keijo Häkkinen⁵, Nathan T. Jenkins⁴², Laura Karavirta⁵, William E. Kraus⁶, Arthur S. Leon⁷, D. C. Rao⁸, Mark A. Sarzynski¹, James S. Skinner⁹, Cris A. Slentz⁶, Tuomo Rankinen¹

PLoS ONE (2012) 7: e37887

PLos one

Anteil Non – Responder für	1 RF: 31% 2 RF: 6%
	3-4 RF: 0,8%

50-40-40 se respo 8,3% 30-3 30 rage of adver 5 20 쳝 19 10-10 Perce 12 17 HERITAGE HERITAGE HERITAGE HERITAGE INFLAME STRRIDE MARYLAND JYVASKYLA Total DREW **Plasma Fasting Insulin** 50 50

Anteil Non-Responder (%)

87

21

13,3%

32

Plasma HDL-C

8

INFLAME STRRIDE MARYLAND JYVASKYLA Total

27

222

Resting Systolic BP

Individuelle Trainierbarkeit

Metabolic Effects of Exercise Training Among Fitness-Nonresponsive Patients With Type 2 Diabetes: The HART-D Study Diabetes Care 2015;38:1494-1501 | DOI: 10.2337/dc14-2378 Ambarish Pandey,¹ Damon L. Swift,² Darren K. McGuire,^{1,3} Colby R. Ayers,³ Ian J. Neeland,¹ Steven N. Blair,⁴ Neil Johannsen,⁵ Conrad P. Earnest,⁶ Jarett D. Berry,^{1,3} and Timothy S. Church²

n = 202 Personen mit Typ-2-Diabetes

9-monatiges Trainingsintervention 3-5 x Ausdauer-/Kraft-/Kombitraining/Woche bei 50-80% VO_{2peak}

Refuting the myth of non-response to exercise training: 'non-responders' do respond to higher dose of training

David Montero^{1,2} D and Carsten Lundby¹

J Physiol (2017) 595: 3377-3387

Individuelle Trainierbarkeit Alles nur eine Frage der Dosis ?

Vom vom Trainingsreiz zur Trainingsanpassung

modifiziert nach: M. Flück (2006) J Exp Biol 209: 2239 • Hood et al. (2006) J Exp Biol 209: 2265 • Yan et al. (2011) J Appl Physiol 110: 264

Zusammenfassung

Große Evidenz zur Wirksamkeit körperlicher Aktivität aus epidemiologische Studien mit Hinweisen zu Dosis-Wirkungsbeziehung (Gruppeneffekte) als robuste Basis für Empfehlungen zur aktivitätsbasierten Prävention

Wachsende Erkenntnisse zu den zugrundeliegenden Mechanismen körperlicher Aktivität bei der Risikoreduktion mit präzisierenden Hinweisen zur Dosis-Wirkungsbeziehung und Reizqualität sowie unter entitätsspezifischen Gesichtspunkten

Individuelle Dosis-Wirkungsbeziehung körperlicher Aktivität als "offene Flanke" in der aktivitätsbezogenen Prävention mit der Notwendigkeit des Verfolgens interdisziplinärer Forschungsansätze

Vielen Dank für Ihre Aufmerksamkeit

04.05.20

© UNIVERSITÄTSKLINIKUM TÜBINGEN.